PROMOTING AND IMPROVING CONSTRUCTION HEALTH AND SAFETY (H&S) THROUGH SYSTEM THINKING

PROFESSOR JOHN SMALLWOOD,
DEPARTMENT OF CONSTRUCTION MANAGEMENT,
NELSON MANDELA METROPOLITAN UNIVERSITY,
SOUTH AFRICA
Introduction (1)

- **Cost, quality, and time:**
 - Traditional project parameters

- **Fatalities, injuries, and disease:**
 - Considerable human suffering and affect (not only the workers, but also their families and communities)
 - Contribute to the national cost of medical care, and rehabilitation
 - Contribute to variability of resource, which increases project risk:
 - Damage to the environment
 - Reduced productivity
 - Non-conformance to quality standards
 - Time overruns
 - Increase in the cost of construction
 - Damage to client property and impaired production processes
 - Poor client and contractor image

- **A range of myths:**
 - H&S costs money
 - Cannot have H&S and productivity
Introduction (2)

- 6 project stages:
 - Project initiation and briefing
 - Concept and feasibility
 - Design development
 - Tender documentation and procurement
 - Construction documentation and management
 - Project close out

- Multi-stakeholder nature underscored by the 6 project stages

- Historically:
 - H&S and other risk related issues have been the contractor’s responsibility
 - Risk has been transferred to the contractor

- Key challenges:
 - Promoting H&S
 - Convincing / Converting the ‘non-believers’
Macro Construction H&S environment

Construction H&S occurs (or does not) in a macro environment:

Figure 1: Construction H&S – the macro environment (Smallwood, 1995)

© 2014: Prof JJ Smallwood
Injaka Bridge collapse (1)

Injaka Bridge collapse, Mpumalanga, July, 1998 (Travers, 1998)
Injaka Bridge collapse (2)

Department of Labour (2002):

- **Causes:**
 - The slide path was not under the webs
 - The placing of the sliding pads between the deck and temporary bearings was not as specified
 - Insufficient reinforcement in the deck section, especially the bottom slab
 - The failure to fully appreciate the implications of the early cracks
 - The acceptance and approval of a launching nose which was substantially less stiff than that prescribed in the project specification
 - The deviation from the project specification regarding the automatic pier deflection monitoring at pier 2
 - The deviation from the project specification regarding the height tolerances of the temporary bearings on pier 3
 - The use of design and construction personnel, at decision-making level, without appropriate qualification and experience in incremental launched bridges
Injaka Bridge collapse (3)

- No independent design reviews were conducted of either the temporary or permanent works

- **Contributory causes:**
 - The lack of experience on the part of design personnel in incremental launching techniques resulted in poor communications between the parties to clarify understandings and interpretations regarding the slide path position
 - The lack of clear instructions in the project specification and clear indications on the consulting engineers design drawings as to the position of the sliding path, resulted in incorrect interpretations being made
Synergy

- The Associated General Contractors of America (1992):
 - Defines synergism as “The interaction of different entities so that the combined effect is greater than the sum of individual efforts.”
 - To facilitate TQM requires that quality efforts be linked to, among other, H&S and productivity.
- Research conducted among PMs in South Africa investigated the impact of inadequate H&S on various project parameters (Smallwood, 1996):
 - Productivity (87.2%)
 - Quality (80.8%)
 - Cost (72.3%)
 - Client perception (68.1%)
 - Environment (66%)
 - Schedule (57.4%)
H&S is a profit centre not a ‘cost’

- Based upon the value of construction work completed in the year 2002, namely R 56 343m (South African Reserve Bank, 2003) the total COA could have been between 4.3% (R 2 401.2m / R 56 343m), and 5.4% (R 3 041.5m / R 56 343m) (Smallwood, 2004)
- Cost of prevention is between 1% and 2% (Smallwood, 2004)
Integration of design and construction (1)

- Two issues - influence of design on construction H&S, and the type of procurement system
- Design influences construction directly and indirectly:
 - Directly, through design, choice of structural frame, details, method of fixing, constructability, and specification of materials and finishes
 - Indirectly, through choice of procurement system and conditions of contract, procurement, decision regarding project duration, and reference to H&S on various occasions
- Certain procurement systems such as design-build promote the integration of design and construction
- Optimum integration engenders and enhances H&S as it facilitates contractor contributions to the design process
- Designing for H&S is one of sixteen design for constructability principles – contractors can contribute
Figure 2: Elevation of masonry Bridge over the Tweed at Coldstream, 1866 (Irwin and Sibbald, 1983)
Integration of design and construction (3)

Figure 3: Centering for masonry Bridge over the Tweed at Coldstream, 1866 (Irwin and Sibbald, 1983)
Integration of design and construction (4)

Bloukrans Bridge (p. 11, Concrete Beton, 1983)
Integration of design and construction (5)

Bloukrans Bridge (Inside Front, Concrete Beton, 1983)
Integration of design and construction (6)

Bloukrans bridge project (Steele, 1983):

- “…notable for the close cooperation and team effort which were achieved by the consultant and contractor, and encouragement given by the client.”
- “… consulting engineers had clearly indicated in their design how the task should be tackled and worked closely with the contractors in converting the drawings they had supplied to reality…”
Construction Regulations (1)

- **Definition of ‘designer’** – a competent person who:
 - prepares a design
 - checks and approves a design
 - arranges for a person at work under his / her control to prepare a design including an employee of that person
 - designs temporary work including its components

- An architect or engineer contributing to, or having overall responsibility for a design

- Building services engineer designing details for fixed plant

- Surveyor specifying articles or drawing up specifications

- Contractor carrying out design work as part of a design and build project

- Interior designer, shop-fitter, or landscape architect
Construction Regulations (2)

- Relative to Structures 6 (1) designers of a structure must:
 - (a) ensure that the H&S standards incorporated into the regulations are complied with in the design
 - (b) take the H&S specification into consideration
 - (c) include in a report to the client before tender stage:
 - all relevant H&S information about the design that may affect the pricing of the work
 - the geotechnical-science aspects
 - the loading that the structure is designed to withstand
 - (d) inform the client of any known or anticipated dangers or hazards relating to the construction work, and make available all relevant information required for the safe execution of the work upon being designed or when the design is changed
 - (e) modify the design or make use of substitute materials where the design necessitates the use of dangerous procedures or materials hazardous to H&S
Construction Regulations (3)

- (f) consider hazards relating to subsequent maintenance of the structure and make provision in the design for that work to be performed to minimize the risk
- (g) when mandated by the client conduct inspections to ensure conformance of construction to design. If not mandated then the client’s agent is responsible
- (h) when mandated by the client stop construction work not in accordance with the design’s H&S aspects. If not mandated then the client’s agent is responsible
- (i) when mandated by the client, during his / her final inspection of the structure include the H&S aspects of the structure, declare the structure safe for use and issue a completion certificate
Construction Regulations (4)

- Clients required to, among other:
 - 5 (1) (a) Prepare a baseline risk assessment (BRA)
 - 5 (1) (b) Prepare an H&S specification based on the BRA
 - 5 (1) (c) Provide the designer with the H&S specification
 - 5 (1) (d) Ensure that the designer takes the H&S specification into account during design
 - 5 (1) (e) Ensure that the designer carries out the duties in Regulation 6 ‘Duties of designers’
 - 5 (1) (f) Include the H&S specification (revised after the designers’ reports?) in the tender documents
 - 5 (1) (g) Ensure that potential PCs have made provision for the cost of H&S in their tenders
 - 5 (1) (h) Ensure that the PC to be appointed has the necessary competencies and resources
Project initiation and briefing (1)

- Quality management system (QMS)
- Client brief:
 - Client H&S goals
 - Client requirements
 - Client responsibilities
 - H&S information
 - Client interventions / contributions
- Client baseline risk assessment (BRA)
- Concept design hazard identification and risk assessment (HIRA)
- H&S measurement e.g. No. of H&S issues raised
- ‘See the end at the beginning’
Project initiation and briefing (2)

Bahia Temple, Delhi, India (Smallwood, 2005)
Project initiation and briefing (3)

Helicopter crash, Strand Street, Cape Town (Vosloo, 1999)
Project initiation and briefing (4)

Helicopter crash, Strand Street, Cape Town (Vosloo, 1999)
Project initiation and briefing (4)

Helicopter crash, Strand Street, Cape Town (Vosloo, 1999)
Project initiation and briefing (5)

Helicopter crash, Strand Street, Cape Town (Vosloo, 1999)
Project initiation and briefing (6)

Helicopter crash, Strand Street, Cape Town (Amalgamated Press, 1999)
Concept and feasibility (1)

- Quality management system (QMS)
- Appointment of H&S Agent
- Client baseline risk assessment (BRA)
- H&S specification
- Concept design hazard identification and risk assessment (HIRA)
- H&S measurement e.g. No. of H&S issues, and design changes due to HIRAs
- ‘See the end at the beginning’
Concept and feasibility (2)

Bahia Temple, Delhi, India (The National Spiritual Assembly of the Bahia’is of India, 2002)
Concept and feasibility (3)

Bahia Temple, Delhi, India (The National Spiritual Assembly of the Bahia’is of India, 2002)
Concept and feasibility (4)

Bahia Temple, Delhi, India (The National Spiritual Assembly of the Bahia’is of India, 2002)
Concept and feasibility (5)

Bahia Temple, Delhi, India (The National Spiritual Assembly of the Bahia’is of India, 2002)
Bahia Temple, Delhi, India (The National Spiritual Assembly of the Bahia’is of India, 2002)
Concept and feasibility (7)

Bahia Temple, Delhi, India (The National Spiritual Assembly of the Bahia’is of India, 2002)
Reduction of risk through design (1)

(Steel Construction, 2004)
Reduction of risk through design (2)

(Steel Construction, 2004)
Reduction of risk through design (3)

(Steel Construction, 2004)
Designing for H&S (1)

Plank and hollow-block composite slab, Plettenberg Bay (Hamp-Adams, 1994)
Designing for H&S (2)

Figure 4: Design HIRA for erecting precast plank and hollow block composite slab

<table>
<thead>
<tr>
<th>SIGNIFICANT HAZARDS</th>
<th>ASSESSMENT OF RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 People falling</td>
<td>3 x 3 = 9</td>
</tr>
<tr>
<td>2 Materials falling</td>
<td>3 x 2 = 6</td>
</tr>
<tr>
<td>3 Collapse of structure</td>
<td>1 x 3 = 3</td>
</tr>
<tr>
<td>4 Pinching</td>
<td>3 x 1 = 3</td>
</tr>
<tr>
<td>5 Manual handling</td>
<td>3 x 2 = 6</td>
</tr>
<tr>
<td>6 Tripping</td>
<td>3 x 2 = 6</td>
</tr>
<tr>
<td>7 Failure of blocks (material)</td>
<td>2 x 3 = 6</td>
</tr>
</tbody>
</table>
Designing for H&S (3)

Pre-cast pre-stressed hollow core slab section (SA Builder Bouer, 2004a)
Pre-cast pre-stressed hollow core slab section (SA Builder Bouer, 2004b)
Tender documentation and procurement

- **Client, project manager and design team:**
 - Quality management system (QMS)
 - Optimum project duration
 - Contract documentation – reference to H&S
 - H&S specification (Revised)
 - Provision for equitable allowance for H&S
 - H&S pre-qualification
 - Ensure adequate allowance for H&S

- **Contractors:**
 - Pre-tender and pre-contract planning:
 - Site layout
 - Programme
 - Method statements
 - H&S plan
 - H&S measurement – leading versus trailing
Construction documentation and management

- Quality management system (QMS)
- H&S management system
- Planning:
 - Programme
 - H&S plan
 - Method statements
- Temporary works design
- H&S appointments
- H&S training
- Construction hazard identification and risk assessment (HIRA)
- H&S meetings
- H&S inspections
- H&S measurement – leading versus trailing e.g. percentage of activities for which safe work procedures exist
- H&S file
Project close out

- As built and as laid drawings
- H&S file – finalise
- H&S measurement – trailing indicators e.g. disabling injury incidence rate (DIIR)
- Project close out report
Complexity (1)

Senge (1990):

- **Detail complexity:**
 - Exposure to many variables
 - When an action has dramatically different effects in the short and long term

- **Dynamic complexity:**
 - Includes situations where cause and effect are subtle, and where the effects of interventions over time are not obvious
 - When an action has one set of consequences locally and a very different set of consequences in another part of the system
 - When obvious interventions produce non-obvious consequences

- Most systems analyses focus on detail complexity, not dynamic complexity
Complexity (2)

- Simulations with many variables and complex arrays of details can distract a person from seeing patterns and major interrelationships.

- Seeing the major interrelationships underlying a problem leads to new insight into what might be done.

- The practice of systems thinking starts:
 - Simple concept called ‘feedback’ that shows how actions can reinforce or counteract each other.
 - Enables the identification of interrelationships, rather than the identification of isolated interventions.

- A mind shift is required from:
 - Seeing parts to seeing wholes.
 - Seeing people as reactors to seeing them as active participants in shaping their reality.
 - Reacting to creating the future.
Complexity (3)

- Reality is made up of circles, but that people see straight lines
- Language shapes perception - what we see, depends on what we are prepared to see
- In order to see system wide interrelationships, a language of interrelationships is required, a language of circles
- By tracing the flows of influence, the patterns that repeat themselves, either contributing to an improvement or deterioration, can be identified
Figure 5: Contractor driven improvement of construction process (Smallwood, 2000)
Figure 6: Contractor resolution of budget pressure vicious circle (Smallwood, 2000)
Figure 7: Contractor resolution of schedule pressure vicious circle (Smallwood, 2000)
Figure 8: Client driven improvement of construction process (Smallwood, 2000)
Figure 9: The holistic role of H&S in overall project performance (Smallwood, 2000)
Key points (1)

- Risks, but they can be managed – mitigated or eliminated
- Construction is not inherently dangerous – strategies, systems, procedures, and protocol
- All accidents are preventable
- Accidents = Failure of management
- Reengineer the built environment and construction
- H&S is a profit centre not a ‘cost’
- Optimum H&S culture - H&S is a value not a priority
- Integrate H&S into all six project stages (plus use and deconstruction stages)
- Design for H&S
- Committed and involved clients
- Competent project managers, designers, quantity surveyors / cost engineers, and construction managers
Key points (2)

- QMSs
- H&S management systems
- Integrated multi-stakeholder project H&S plans
- Inclusive tertiary built environment education (construction H&S)
- Adopt systems thinking to address H&S complexity
Conclusions (1)

- All built environment stakeholders and a range of interventions relative to each, influence construction H&S.
- Given the number of stakeholders and the range of interventions, the project management of H&S entails exposure to a range of variables.
- The exposure to the many variables results in complexity.
- Detail complexity due to the exposure to many variables, and dynamic complexity due to the many situations that exist where cause and effect are subtle or not obvious (or rather, not recognised by stakeholders).
- Many interventions have one set of consequences locally and a very different set of consequences in another phase of the project.
Conclusions (2)

- The causal loop analysis clearly indicates the relationships between and the influence of the various interventions – from the ‘inception’ in the form of government / client / PM / designer / contractor awareness / acknowledgement that poor H&S and overall performance can be addressed, and ultimately, overall performance can be enhanced and cost reduced.

- System thinking can and should (must) be used to:
 - Promote H&S
 - Convince / Convert the ‘non-believers’
References (1)

References (2)

References (3)

References (4)